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Abstract—Flush-based cache attacks like Flush+Reload and
Flush+Flush are highly precise and effective. Most of the flush-
based attacks provide high accuracy in controlled and isolated
environments where attacker and victim share OS pages. How-
ever, we observe that these attacks are prone to low accuracy
on a noisy multi-core system with co-running applications. Two
root causes for the varying accuracy of flush-based attacks
are: (i) the dynamic nature of core frequencies that fluctuate
depending on the system load, and (ii) the relative placement
of victim and attacker threads in the processor, like same or
different physical cores. These dynamic factors critically affect
the execution latency of key instructions like clflush and mov,
rendering the pre-attack calibration step ineffective.

We propose DABANGG, a set of novel refinements to make
flush-based attacks resilient to system noise by making them
aware of frequency and thread placement. First, we introduce
pre-attack calibration that is aware of instruction latency varia-
tion. Second, we use low-cost attack-time optimizations like fine-
grained busy waiting and periodic feedback about the latency
thresholds to improve the effectiveness of the attack. Finally, we
provide victim-specific parameters that significantly improve the
attack accuracy. We evaluate DABANGG-enabled Flush+Reload
and Flush+Flush attacks against the standard attacks in side-
channel and covert-channel experiments with varying levels of
compute, memory, and IO-intensive system noise. In all scenarios,
DABANGG+Flush+Reload and DABANGG+Flush+Flush outper-
form the standard attacks in stealth and accuracy.

Index Terms—Side-Channel Attacks, Dynamic Voltage & Fre-
quency Scaling, Side-Channel Detectors

I. INTRODUCTION

On-chip caches on modern processors provide the perfect

platform to mount side-channel and covert-channel attacks as

attackers exploit the timing difference between a cache hit

and a cache miss. A miss in the Last-level Cache (LLC)

fetches data from DRAM, providing a measurable difference

in latency compared to a hit in the LLC. Some common

cache attacks are flush-based attacks like Flush+Reload [1]

and Flush+Flush [2] and eviction-based attacks [3], [4], [5].

Compared to eviction based attacks, flush-based attacks pro-

vide better precision and accuracy as flush-based attacks

require OS page sharing between the attacker and the victim.

Thus, the attacker can precisely flush (with the clflush
instruction) and reload (or flush again, in case of Flush+Flush

attack) a particular cache line. Like any other timing-based

§The author was a student at Indian Institute of Technology Kanpur during
this work.

Fig. 1. Variation in reload cache hit latency with sleep() system call
invoked every 100 thousandth iteration.

attack, flush-based cache attacks rely on accurate calibration

of the threshold which differentiates a cache hit from a cache

miss. As clflush invalidates the cache line from the entire

cache hierarchy, the threshold needs to precisely differentiate

between an LLC hit from a miss.

The problem: Flush-based attacks perform poorly in the

presence of I/O, compute, and memory-heavy system noise.

To understand the effect of these system noises on the ef-

fectiveness of flush-based attacks, we perform simple side-

channel and covert channel attacks that use clflush. In a

covert channel attack, Flush+Reload and Flush+Flush attacks

suffer from maximum error rates of 45% and 53%, respec-

tively. In contrast, Flush+Reload and Flush+Flush provide high

accuracy in controlled environments where only the attacker

and the victim run concurrently. One of the primary reasons

for this trend is that with the system noise, existing latency

calibration mechanisms fail to provide a precise cache access

time threshold. Prior works [6], [7] try to improve noise-

resilience of Flush+Reload attacks tackle noise in covert-

channel attacks only, which cannot be translated to side-

channel attacks. In this paper, we propose a generic approach

to handle the system noise.

The root cause: To understand the subtle problem, we perform

the Flush+Reload attack in a highly controlled environment

(with no noise from co-running threads). We perform the

following steps: (i) Flush a cache line, (ii)Wait for the victim’s

access by yielding the processor (sleeping), and (iii) Reload
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Fig. 2. Variation in reload cache hit latency with relative placement of
attacker and victim processes. All cores run at the (fixed) base frequency.

the same cache line that is flushed in step (i). We perform

these three steps for thousands of attack iterations, where one

iteration involves the above mentioned three steps. Figure 1

shows the variation in execution latency of a reload cache

hit with the movl instruction. For the rest of the paper, we

refer to movl as the reload instruction. We use the rdtsc
instruction to measure the execution time of instructions. At

every 100 thousandth iteration, we use sleep() function to

sleep for 1 second, which results in the black curve. Note that

in a real attack, an attacker will not sleep for one second.

Next, we fix the processor frequency at 4.3 GHz and repeat

the same experiment. The latency remains constant at around

100 cycles.

It is clear from Figure 1 that the reload latency increases

drastically just after the sleep() system call. The increase

in latency is due to a change in processor frequency, which is

triggered by the underlying Dynamic Voltage and Frequency

Scaling (DVFS) [8] controller. If an attacker sets a latency

threshold to distinguish a cache hit from a miss anywhere

between 100 to 400 cycles, this results in false positives

and reduces the effectiveness of flush-based attacks. The

frequency-oblivious latency threshold leads to low accuracy

in flush-based cache attacks.

Even if we fix the frequency of all the cores, the latency of

reload cache hit is still dependent on where the victim and

attacker threads are located in the processor (refer to Figure 2).

The reload hit latency when the two threads run on the same

(multi-threaded) physical core is different from when they

run on different physical cores. Didier and Maurice [9], for

instance, show that incorporating CPU interconnect topology

plays an important role in calibrating clflush threshold.

In this paper, we study the effect of frequency on latency

variation that impacts accuracy of attacks, even on a single

core CPU.

Thus, in a noisy system with various co-running applica-
tions, the DVFS controller throttles up and down the processor
frequency according to system load. However, instructions
such as rdtsc that measure the timing are unaffected by
the change in the processor frequencies. Consequently, when
the processor runs at a lower frequency, rdtsc reports higher

latency even in case of a cache hit. This is further complicated
by the relative placement of victim and attacker threads on the
processor.
Our goal is to improve the effectiveness of flush-based attacks

in presence of extreme system noise by making them resilient

to the effect of frequency and thread placement changes.

Our approach: We propose refinements that ensure the cache

access latency threshold remains consistent and resilient to

system noise by improving the calibration technique and

the attacker’s waiting strategy. We name our refinements as

DABANGG §. Overall, our key contributions are as follows:

• We analyze the major shortcomings of existing flush-

based attacks and argue for noise resilient flush-based

attacks (Section III).

• We propose DABANGG refinements that makes the

flush-based attacks resilient to system noise (Section IV).

• We evaluate the standard and DABANGG-refined attacks

in the presence of different levels of compute, memory,

and I/O system noise (Section V).

In the following sections, we discuss current flush-based

attacks, defenses, and optimizations (Section II), analyze the

shortcomings of current attacks (Section III), describe our

refinements (Section IV), present experimental results (Section

V), discuss countermeasures (Section VI), and finally present

our conclusions (Section VIII).

II. BACKGROUND

A. Dynamic Voltage & Frequency Scaling

Frequency and voltage are the two important run-time

parameters managed through DVFS. Hardware and software

components work cooperatively to realize this scheme.

Hardware support: A majority of modern processors are

capable of operating in various clock frequency and voltage

combinations referred to as the Operating Performance Points

(OPPs) or Performance states (P-states) [10]. Conventionally,

frequency is actively manipulated by the software component.

Therefore, performance scaling is sometimes referred to as

frequency scaling. The P-states can be managed through

kernel-level software. They can also be managed directly

through a hardware-level subsystem, termed Hardware-

managed P-states (HWP). Intel uses the Enhanced SpeedStep

technology [11], and AMD uses Cool’n’Quiet and PowerNow!

[12] technologies for HWP. In this case, the processor selects

P-states based on its assessment of system load, although the

driver can provide hints to the hardware. The nature of these

hints depends on the scaling algorithm (power governor).

Another technology of interest is Intel’s Turbo Boost [13]

(analogously, AMD’s Turbo Core [14]) technology, which

allows to temporarily boost the processor’s frequency to

values above the base frequency.

Depending on the processor model, Intel processor provides

core-level granularity of frequency-scaling termed as the

Per-Core P-State (PCPS), which independently optimizes

§DABANGG is a Hindi word that means fearless. We believe DABANGG
refinements will make a flush-based attacker fearless of the system noise.
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frequency for each physical core [15].

Software support: The CPUFreq subsystem in

Linux coordinates frequency scaling in software

and is accessible by a write-privileged user via the

/sys/devices/system/cpu/ policy interface. Fine-

tuning of this interface is possible through the sysfs
interface objects. Modern Intel processors come with

pstate drivers providing fine granularity of frequency

scaling. It works at a logical CPU level, that is, a system

with eight physical cores with hyper-threading enabled (two

logical cores per one physical core) has 16 CPUFreq policy

objects, although the physical frequency domain is at the

physical core level (in case of PCPS) or at the socket level.

B. Timekeeping mechanism

Most of the x86_64 based processors use the

IA32_TIME_STAMP_COUNTER Model-Specific Register

(MSR) to provide a timekeeping mechanism. Different

processor families increment the timestamp counter (TSC)

differently. There are two modes of incrementing TSC: (i)

to increment at the same rate as the processor clock and (ii)

to increment at a rate independent of the processor clock.

Modern Intel processors use the second mode [16]. Thus,
the TSC increments at a constant rate and is invariant of
processor core frequency changes.

C. Flush-Based Cache Attacks

Flush-based attacks such as Flush+Reload and Flush+Flush

use clflush instruction that invalidates cache block(s) from

all levels of cache hierarchy and the corresponding data is

written back to memory [16]. In a cross-core attack, the

attacker core flushes (using clflush instruction) cache line

address(es) from all levels of caches including remote cores’

caches and the shared LLC. Later, the attacker core reloads

(Flush+Reload) or flushes (Flush+Flush) the same line ad-

dress(es).

The three phases: Flush+Reload and Flush+Flush work in

three phases: (i) flush phase, where the attacker core flushes

(using clflush instruction) the cache line address(es) of

interest. (ii) Wait phase, where the attacker waits for the victim

to access the flushed address, as it is not present in the entire

cache hierarchy. If the victim accesses the flushed address,

then it loads the address into the shared LLC. (iii) Reload

(Flush in case of Flush+Flush) phase, where the attacker

reloads (or flushes) the cache line address and measures the

latency. If the victim accesses the cache line between phase

I and III, then in case of Flush+Reload attack, the attacker

core gets an LLC hit (LLC access latency), else an LLC miss

(DRAM access latency). In case of Flush+Flush attack, the

attacker core gets a clflush hit latency if the victim accesses

the cache line between phase I and III, else a clflush miss

latency. Since no memory accesses are performed in the case

of Flush+Flush attack, it is harder to detect using performance

counters which record cache references and misses, compared

to Flush+Reload attack [2]. This makes the Flush+Flush attack

stealthy.

TABLE I
SYSTEM CONFIGURATION FOR ANALYSIS AND EXPERIMENTS.

Ubuntu 18.04.1 LTS, 8 Hyper-Threaded Intel Xeon W-2145 Skylake cores

Frequency: Base - 3.7 GHz, Minimum - 1.2 GHz, Turbo - 4.5 GHz

L1-D and L1-I: 32KB, 8 way, L2: 1 MB, 16-way

Shared L3: 11MB, 11-way, DRAM: 16 GB

Latency threshold and wait time: Flush-based attacks exploit

the difference in execution latency of clflush and reload
instructions depending on whether they get a cache hit or

a miss for the monitored address(es). The attacker waits in

between phase I and phase III to provide adequate time for

the victim to access the cache. Waiting time plays an important

role in the overall effectiveness of flush-based attacks. Usually,

the three phases are executed step-by-step in a loop, which

we refer to as the attack loop. The attacker program may be

synchronous or asynchronous with respect to the spy program.

III. ANALYSIS

A. Experimental Setup

Table I shows our system configuration. Though we use

an Intel machine, we perform our experiments and find our

proposal is equally effective on AMD based x86_64 ma-

chines (AMD A6-9220 RADEON R4) and macOS X (Version:

10.15.4). We use the stress tool [17] to generate compute-

intensive and IO-intensive noise, and SPEC 2017 mcf [18]

benchmark to generate memory-intensive noise. mcf is a stan-

dard benchmark used in the computer architecture community

for memory systems research with an LLC misses per kilo

instructions (MPKI) of over 100.

Noise Levels: We generate noise as a combination of

Compute-Memory-IO (C-M-I) intensive noise, where each

component can have a low (L) or high (H) noise-level, thereby

generating 8 combinations spanning L-L-L to H-H-H.

At the high noise level (H-H-H), eight CPU-intensive, eight

IO-intensive and eight memory-intensive threads are running

simultaneously, pushing the core runtime-usage to 100% on

all cores (observed using htop). High level of compute-

intensive noise results in high core frequencies on which the

relevant code executes. In contrast, a high level of IO-intensive

noise result in lower core frequencies because IO-intensive

applications sleep and wake up on interrupts. Power governors

take clues from application behavior to tune the frequency

domains accordingly.

B. Variable Execution Latency

The flush-based attacks rely on the execution timing dif-

ference between a cache hit and a miss. The attacker expects

instruction latency to vary based on the microarchitectural state

(that is, cache hit or cache miss), and this is the premise

for flush-based attacks. However, the latency variation for

the same microarchitectural state (for example, a reload
instruction that hits in cache) is not accounted for in the

standard flush-based attack loops. We plot the variable cache

hit and miss latency for clflush instruction as a function

325



(a) (b)

Fig. 3. (a) and (b) show the variation of clflush and reload latency, respectively, at default frequency scaling settings. The attacker and victim processes
run at L-L-L noise level and are not pinned to any cores. As the attacker loop runs for more iterations, the processor frequency increases, resulting in lower
observed latency. We compute the threshold using standard attack calibration tools available at https://github.com/IAIK/flush flush.

of attack loop iterations in Figure 3(a), and for reload
instruction in Figure 3(b).

Root Causes: The variation in latency of instruction exe-

cution with same micorarchitectural state is due to two root-

causes: (i) the Dynamic Voltage & Frequency Scaling (DVFS)

and (ii) OS scheduling behavior.

1) Dynamic Voltage & Frequency Scaling: DVFS changes

the frequency of the processor, while the timekeeping mecha-

nism in modern x86_64 based machines is invariant of these

frequency changes. Thus, the time-stamp counter increments

like a wall-clock and the DVFS-induced latency variation

is visible in its readings. Modern processors use different

frequency domains for the cores and the LLC and memory

controllers that, as per Intel terminology, form part of the

Uncore [19]. The Uncore’s frequency and power are managed

separately and in general do not change frequency when a core

frequency transition occurs.

2) OS Scheduling Behavior: The OS can schedule pro-

cesses on any logical CPU as per its scheduling policy

behavior. Usually, at lower noise-levels (L-L-L, L-L-H, L-

H-L, H-L-L), the OS tries to schedule distinct processes on

distinct physical cores to maximize availability of resources

like private caches for each process. Thus, the attacker and

victim processes are present on distinct cores, sharing only

the LLC. However, at high noise-levels (H-H-H, H-H-L, H-

L-H, L-H-H), as such scheduling is not always possible, the

attacker and victim processes may be scheduled on the same

physical core. The latency of an LLC cache reference depends

on the mapping of attacker and victim processes to cores. This

latency difference is more pronounced if the LLC is sliced

[20], which is common for processors with large number of

cores, including the Xeon processor in our experimental setup.

The same argument extends to NUMA nodes wherein the

latency difference is even more significant [9].

We now analyze the effect of (i) and (ii) together and

its impact on instruction latency by focusing on clflush.

Figure 4 shows the variation in clflush latency at different

configurations of fixed processor frequencies and relative

Fig. 4. Variation of clflush latency for different configurations at fixed
frequencies (denoted by the curves) and L-L-L noise level. The attacker
runs on core-0 (C0). In configuration 1, there are no victim accesses
and attacker measures clflush miss latency. In configurations 2 and 3,
victim runs on {C0} (same logical core) and {C1} (different physical
core), respectively. In configurations 4 to 6, a multi-threaded victim runs
on {C0, C1}, {C1, C2, C3}, and {C0, C1, C2, C3} respectively. Attacker
measures clflush hit latency in configurations 2 to 6.

victim placement. For all curves (representing system at dif-

ferent frequencies), going from same logical core to different

physical core (configurations 2 and 3, respectively) represents

a measurable increase in clflush hit latency. Moreover, for

all configurations (representing different relative placement of

victim and attacker processes), there is considerable difference

in latency at low processor frequency (red curve) and high

processor frequencies (black and green curves). Depending on

the system noise level, any of red, green, or black curves at

configurations 2 to 6 can represent the clflush hit latency.

Takeaway: The instruction execution latency at a given mi-

croarchitectural state depends on frequency as well as mapping

of victim and attacker processes to logical and physical cores.
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C. clflush and reload Instructions

We now compare the accuracy of F+F and F+R attacks by

analyzing the behavior for clflush and reload instruc-

tions.

clflush: Figure 3(a) shows the latency of clflush
instruction (at L-L-L noise level) as a function of attack-loop

iterations. The instruction latency decreases as the attacker

code iterates through the attack loop and stabilizes after 75,000

iterations, taking up 335 million cycles (one iteration is about

4,500 cycles). The latency difference between a clflush
hit and a miss at the stabilized latency is 100 cycles. Figure

4 showcases the different latencies for clflush cache hit

at different frequency configurations. The attacker and victim

cores run at high frequencies while other cores run at lower

frequencies. The clflush hit latency varies widely with

frequency and the difference between a hit and a miss is, on

average, 17% of the hit latency.

reload: Figure 3(b) shows the variation of reload latency

over attack-loop iterations. The reload cache hit latency

stabilizes to 100 cycles within 15,000 iterations. Moreover,

Figure 2 shows that the hit latency for same logical core is

only 60 cycles. Whereas, the lowest reload miss latency

is DRAM access latency at 400 cycles. On our system, the

variation of reload miss latency with processor frequency

is such that the highest hit latency is less than the lowest

miss latency. Note that this behavior varies depending on the

processor.

Takeaway: Flush+Reload attack is more resilient to fre-

quency changes due to a significant difference between

reload hit and miss latency. Flush+Flush attack is vulner-

able to latency variation as the hit and miss latency are of

comparable magnitude.

D. Waiting phase of the Attack

The Linux scheduler is called proactively by the attacker

using sched_yield() function call in standard attacks.

Cooperatively yielding hints the power governor to assess the

frequency and potentially change it, and allows the OS sched-

uler to context switch the attacker process to another core. It is

pragmatic to replace the sched_yield() based cooperative

approach with a more aggressive compute-intensive approach.

We run compute intensive operations in a busy-wait type loop,

which steps up the processor frequency. It allows the execution

latency of instructions to stabilize quickly. It also provides

control over the waiting times in the attack loop.

Therefore, we use a compute-heavy loop for wait_gap
iterations in each waiting phase of the attack loop. Here, the

variable wait_gap can be dynamically changed to provide

precise control over the waiting period. If an address is

accessed multiple times by the victim in a gap period, there

is no way to ascertain one access from the other. On the other

hand, if the attacker flushes the addresses in rapid succession,

a true cache-hit may be missed due to overlap with phase-I of

the attack. A suitable waiting period is therefore, empirically

derived. Existing literature [6] suggests that a waiting period

of 5,000 to 10,000 cycles is sufficient to detect individual

Fig. 5. Variation of reload hit latency with attack iterations.

cache accesses in many important flush-based attacks. We can

apply this analysis to the phase-II of synchronous attacks. In

the case of asynchronous attacks, we don’t need to wait a

lot between probes. In that case, however, to eliminate the

frequency-induced variation in latency, we run the compute-

intensive loop for a few million cycles to stabilize the core

at high frequency. We call the Compute_Heavy_Code()
function once before going into the attack loop with a large

wait_gap (≈ 105).

IV. DABANGG ATTACK REFINEMENTS

Taking into account the insights uncovered in previous

sections, we outline three refinements over baseline flush

attacks. We call these the DABANGG refinements. They

make the attacker frequency-aware and victim-aware and

consequently noise-resilient.

Refinement #1: We calibrate comprehensively to capture

the frequency and core placement-based latency variation

to obtain multiple thresholds.

Refinement #2: We periodically verify the victim’s memory

access pattern and whether the current threshold is correct

in the attack through a feedback loop.

Refinement #3: We use a compute-intensive loop providing

fine grained control over waiting period in the attack loop.

The following sub-sections detail the implementation of

DABANGG refinements.

A. Calibration

In this pre-attack step, the calibration program determines

attacker-specific parameters. The attacker profiles the victim

application to identify the target memory address(es) according

to the attack scenario and threat model. Table II provides the

details of all the parameters that DABANGG attack loop uses

and we refer to it throughout this section.

The calibration program derives attacker-specific parameters

from the latency vs iterations behavior. We use Figure 5 (a

fine-grained version of Figure 3(b)) to explain the method
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TABLE II
SPECIFICATIONS OF PARAMETERS AND RUNTIME VARIABLES USED BY DABANGG ATTACK LOOP (REFER ALGORITHM 1).

Parameters Name Description
Attacker-Specific T array An array with each entry stores a tuple of lower and upper latency thresholds <TL,TH>.

regular gap Regular waiting period of attacker in Phase II.
step width Average width of a step in terms of number of attack loop iterations in latency vs #iterations plot.

Victim-Specific acc interval
Average number of attack loop iterations between two victim accesses without considering
burst-mode accesses in between.

burst seq
In case of burst-mode access sequence by victim, number of victim accesses to target memory
address in a single burst.

burst wait
Waiting time gap in terms of attack loop iterations before discarding an incomplete burst-mode
access sequence as a false positive.

burst gap Reduced waiting time gap to monitor burst-mode access sequence.
Runtime Variables
in Algorithm 1 iter num A counter that counts the number of attack loop iterations.

<TL,TH> Pair of lower (TL) and upper (TH) latency threshold to detect cache hit.
reload latency Execution latency of reload instruction in processor cycles.

last hit
Number of attack loop iterations since last true cache hit. A true cache hit is recorded by attacker
when victim access interval (acc interval) and victim burst-mode access sequence (burst seq)
criteria are satisfied, in addition to reload latency ∈ [TL,TH].

potential hit
Number of attack loop iterations since last potential cache hit. A potential hit may be either a
false positive or a part of burst-mode access sequence by victim application.

seq id
Sequence identifier, stores the number of potential cache hits which, if it forms a burst-mode access
sequence, implies a true cache hit.

to compute these parameters. The reload hit latency rep-

resents a stepped distribution and T_array captures this

distribution. Multiple pairs of < TL, TH > are stored as

tuples in T_array (refer to Table II). From Figure 5, four

distinct steps are visible. The width of each step, which is

the extent of each step on the x-axis (step_width), is

4000 attack loop iterations. The first step, where iter_num
∈ [0, 4000], we can accurately distinguish a cache hit if

measured latency is between 375 and 400 cycles. Therefore,

T_array[0] = < 375, 400 >. Similarly, we add three more

tuples to T_array. These parameters are independent of

victim applications. regular_gap parameter depends on

the type of attack mounted (asynchronous or synchronous).

regular_gap = 200 provides a waiting period of 5,000 to

10,000 cycles (refer to Section III-D for details).

B. Victim Profiling
In the initial phase of the attack, the attacker derives victim-

specific parameters by observing the memory access pattern

for target addresses of the victim. We briefly explain the

method that we use to compute these parameters.
Consider that the victim application accesses the critical

memory address once in one million cycles on average, and

an attack-loop iteration takes 10,000 cycles at low processor

frequency, then acc_interval = 1,000,000
10,000 = 100. A burst-

mode access sequence occurs when the target address is

accessed several times within a few thousand cycles, or within

few regular_gap based attack loop iterations. Consider

that the victim accesses the address 40 times within 20,000

cycles, for example. If we wait using the regular_gap,

which takes 10,000 cycles at low frequency, we can only

observe 2 cache hits. We utilize the burst-mode parameters

to capture the burst-access pattern at finer granularity.
burst_seq ≤ 40 (since we have 40 accesses by vic-

tim in burst-mode) and waiting period when a burst is

detected should be ≤ 20,000
40 = 500 cycles. This implies

a burst_gap ≈ 10, which increases attack granularity

(compared to regular_gap = 200). Moreover, to reduce

false negatives, we tolerate some missed cache-hits to de-

termine the sequence, burst_seq = 40
burst_wait and = x

where burst_wait is small compared to 40. For example,

burst_seq = 20 for burst_wait = 2. That is, the attack

loop tolerates 2 iterations of cache misses between burst

accesses before discarding the access sequence.

C. Attack Loop

Algorithm 1 explains the DABANGG attack loop. Line

1 initializes the runtime variables of interest, refer Table II

for details. Line 3 increments the iteration number. Line 4

updates < TL, TH > through a simple indexing mecha-

nism. iter_num divided by step_width linearly indexes

T_array to provide a single pair of thresholds per step. Line

5 starts the attack and flushes the shared memory address.

Lines 6 to 12 represent the waiting phase of the attack. Ap-

proximately once every 400 iterations (0.25% of all iterations),

the attack loop verifies the current value of < TL, TH >.

The Verify-Threshold() function, given in Algorithm

2, checks if the current tuple of thresholds, < TL, TH >
accurately detect a cache hit at the current frequency. Lines 2

and 3 of Algorithm 2 measure the accurate access latency for

target memory address. If Δ ∈ [TL, TH], the function returns

without making any changes. However, if Δ /∈ [TL, TH]
(Line 4), then the tuple is updated. This is done by looking up

T_array such that Δ ∈[TLnew,THnew] and T_array[i]
= < TLnew, THnew > (Line 5). Lines 6 and 7 update the

tuple and iter_num, respectively. Verification and feedback

enables threshold to dynamically adapt to frequency changes

which differ from Figure 5 in extremely noisy environments.
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ALGORITHM 1: DABANGG+FLUSH+RELOAD
1 Initialization: last hit, potential hit, iter num, seq id = 0
2 while true do
3 iter num += 1

4 <TL,TH> = T array[ iter num
step width

] // update <TL,TH>

5 clflush(addr) // PHASE-I: Flush
// PHASE-II: Wait

6 if (!rand()%400) then // branch taken 0.25% of
time

7 Verify Threshold(iter num, addr) // Algorithm 2
8 sched yield() // cooperatively yield the CPU
9 else if (seq id > 0) then// burst sequence detected

10 Compute Heavy Code(burst gap)
11 else
12 Compute Heavy Code(regular gap)

// PHASE-III: Reload
13 reload latency = Measure Reload Latency(addr) // Similar

to code in [1]
14 if (reload latency ∈[TL,TH]) and ( last hit > acc interval)

and (seq id > burst seq)) then // true hit
15 last hit, seq id = 0 // reset variables
16 print ”low reload latency, it is a cache hit!”
17 else if (reload latency ∈[TL, TH]) then// potential hit
18 potential hit = last hit
19 seq id += 1 // increment sequence identifier

20 else
21 last hit += 1 // +1 iteration since last hit
22 print ”high reload latency, it is a cache miss!”
23 if ((last hit - potential hit) > burst wait) then
24 seq id = 0 // discard seq as false

positive

After verifying thresholds, the control flow returns to Algo-

rithm 1, Line 8. sched_yield() function yields the pro-

cessor cooperatively (once in a while based on the condition

in Line 6) to prevent detection of an attack loop based on

continuous usage of computationally heavy code. Most of the

time, however, the attacker runs a compute-heavy code (Lines

10 and 12) and wait_gap is appropriately chosen. Line 9

checks if an active burst sequence is present (that is, seq_id
0), and uses burst_gap to reduce the waiting period of the

attack loop.

In the third phase of the attack. Line 14 performs the

reload and calculates its execution latency. Line 15 checks

for a true cache hit. Here, the condition (last_hit >
acc_interval) checks if access interval since the last

true cache hit is adequate and (seq_id > burst_seq)

checks if the burst sequence pattern is identified. In this case,

the variables are reset in Line 16 and a true cache hit is

registered in Line 17. Line 18 deals with a potential cache-

hit, wherein Line 20 increments the sequence identifier and

potential_hit variable is updated.

Line 22 increments the last_hit variable if

reload_latency /∈ [TL,TH]. Line 23 records a cache-

miss for the current iteration of the loop. However, instead of

resetting the sequence identifier (that is, seq_id) right away,

awaiting window of burst_wait attack loop iterations

exists (in Line 24). The waiting window allows us to account

for cache-hits missed by the attack loop. A cache-hit missed

by the attacker occurs due to overlapping in phase I (Flush

ALGORITHM 2: Verify Threshold
1 Input: iter num, addr
2 reload(addr)
3 Δ = Measure Reload Latency(addr)
4 if (Δ /∈[TL,TH]) then

// T_array[i].TL < Δ < T_array[i].TH where
i is index of tuple in T_array

5 ∃ <TLnew ,THnew > = T array[i] : Δ ∈[TLnew ,THnew]
6 <TL,TH> = <TLnew ,THnew >
7 iter num = step width×i
8 end

TABLE III
PARAMETERS FOR KEYLOGGING ATTACK.

Parameter D+F+F D+F+R
acc interval 1000 1000
burst seq 15 20
burst wait 3 2
burst gap 40 30
regular gap 100 50

phase) of the attack loop with access to monitored cache line

by the victim, wherein the attack loop flushes the line right

after the victim accesses it. Line 25 resets seq_id to zero

if the waiting window is exceeded. This concludes an attack

loop iteration, and the control switches back to Line 3 of

the attack. Flush+Flush attack can similarly be extended to

DABANGG+Flush+Flush. Note that in all the refinements,
we do not use or demand privileged operations.

In the following section, we evaluate the DABANGG

refined attacks in many real-world scenarios and compare

the accuracy and stealth with standard Flush+Flush and

Flush+Reload attacks.

V. EXPERIMENTS

We give an overview of our experimental setup, review the

attacks and threat models, and present results.

For all experiments, we use the same attacker-specific

parameters as computed in Section IV-A and we state the

victim-specific parameters of each attack scenario.

A. Side-channel Attack based on Keylogging

The objective of this attack is to infer a character sequence

processed by the victim program. We use an array of 1024

characters. The distribution of characters is uniform and ran-

dom. The victim program takes as input a character from a set

of accepted characters, and for each character, calls a unique

function that runs a loop a few thousand times. The victim

program processes multiple characters every second, with a

waiting period between two characters to emulate the human

typing speed.

Threat model: As all the flush-based attacks demand page

sharing between the victim and the attacker, the attacker

maps the victim program’s binary (using mmap() function)

and disassembles the victim program’s binary through gdb
tool to find out the addresses of interest. The attacker then

monitors the characters and infers if the specified characters

are processed by the victim.

329



TABLE IV
ACCURACY OF VARIOUS FLUSH-BASED ATTACKS ON MULTIPLE CHARACTER KEY-LOGGING.

Attack L-L-L L-L-H L-H-L L-H-H H-L-L H-L-H H-H-L H-H-H
F+F 37.2% 21.1% 31.4% 16.7% 36.4% 27.2% 19.7% 34.6%

D+F+F 94.5% 92% 94.1% 92.2% 95.4% 94.6% 93.2% 96.7%
F+R 84.2% 69.3% 74.9% 82.5% 85.1% 75.4% 71.6% 78.2%

D+F+R 99.6% 91.2% 97.2% 96.5% 98.5% 97.2% 99.2% 98.1%

(a) (b)

Fig. 6. Accuracy comparison of Flush+Reload, Flush+Flush, DABANGG+Flush+Reload, and DABANGG+Flush+Flush attacks at selected noise levels (for
clarity) for different numbers of attack iterations where each iteration performs 4 encryption calls to AES_Encrypt function.

Fig. 7. Error rates of different attacks in covert channel scenario at various
noise levels.

We derive victim-specific parameters specified in Table III

which are calculated as per the pre-attack steps (section IV-A).

The power-scaling settings are set to default state. We utilize

the Levenshtein distance (Lev) algorithm [21] to compare the

accuracy of various attacks at all the system noise levels. The

Lev algorithm compares the actual input sequence with the

sequence observed by the attacker and computes accuracy

based on the number of insertion, substitution and deletion
operations.

Results: As shown in Table IV, DABANGG-refined attacks

produce accurate results and more noise-tolerant than the

standard attacks. The Flush+Flush attack, in particular, suffers

from highly variable clflush latency and yielding the CPU

too often. The standard attacks suffer significantly from false

positives at low noise levels due to imprecise calibration

Fig. 8. Bandwidth of different attacks in covert channel scenario at various
noise levels.

and threshold. At high noise levels, the standard attacks

yield the CPU unnecessarily, missing input characters (false

negatives). In contrast, DABANGG attacks produce more than

90% accuracy irrespective of the noise level. Note the relative

increase in attack accuracy with an increase in compute-

intensive noise (H-L-L) compared to IO-intensive noise (L-L-

H), which exemplifies the effect of DVFS and OS scheduling.

A breakdown of utility of DABANGG refinements is presented

in Appendix A.

B. AES Key Extraction in OpenSSL

We exploit the T-Table based implementation of AES in

OpenSSL [22], which is still in use commercially, notably

in the FIPS mode of OpenSSL 1.0.2 [23]. We build the
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TABLE V
PARAMETERS FOR AES ATTACK.

Parameters D+F+F D+F+R
acc interval, burst seq, and burst wait 0 0

burst gap and regular gap 400 400

library version 1.1.0f from source and enable T-Tables through

configuration options.

Threat model: We mount an asynchronous, known ci-
phertext attack, where the victim finishes execution before

the attacker evaluates the memory addresses. The average

execution time of AES_Encrypt is 750 cycles, too small

for attacker synchronization on a busy system. We monitor

the first memory address of T
(10)
i , i ∈ [0, 3]. We only need to

flush one cache line before every encryption, without requiring

the plaintext. This provides us with the reload-frequency of

the ciphertext (c) bytes, (c0, .., c15). We then determine the

correct secret key (k) bytes. The algorithm for ciphertext

determination and consequent key determination is outlined

by G. Irazoqui et al [24].

The parameters specific to this attack are specified in Table

V. We do not need to monitor any burst-mode sequences

since this is an asynchronous attack. We aim to minimize

the number of AES_Encrypt function calls that perform

the 10 AES rounds. We again use the Levenshtein distance

to determine accuracy over 1000 attack runs. We vary the

number of attack iterations where each iteration requires 4

AES_Encrypt function calls, each on randomly generated

plaintext and the same secret key, from 103 to 4×105 attack

iterations.

Results: Figures 6(a) and 6(b) show the benefits of DA-

BANGG refinements. The F+R attack has an average ac-

curacy of ≥90% at 100K iterations while D+F+R reaches

the same accuracy within 20K iterations, a 5× improvement.

The dynamic thresholds help distinguish between a reload
hit and miss when the frequency isn’t stable. The lower

number of encryptions required primarily increases the stealth

of F+R attack. If software countermeasures are implemented to

detect repeated calls to AES_Encrypt within a short period,

D+F+R is much more likely to evade detection.

Figure 6(a) illustrates the much quicker rise in accuracy

for increasing attack iterations by integrating refinement #3
to the standard Flush+Flush attack. While the number of

AES_Encrypt function calls is higher than F+R attack

for both variants of F+F attack, the D+F+F attack achieves

90% accuracy in 200,000 iterations, twice as quick than the

400K iterations required for Flush+Flush. D+F+F attack also

produces a accuracy of more than 50% at the 15K iterations

mark, far lower than 100K+ iterations required by the F+F

attack. Again, we see a stealthier attack that is more likely to

evade detection.

C. Covert Channel Attack

We cooperatively leak data using a sender-receiver model in

the victim machine through a covert channel based on flush-

based cache attacks.

TABLE VI
PARAMETERS FOR COVERT CHANNEL ATTACK.

Parameter D+F+F D+F+R
acc interval 10 10

burst seq 2 2

burst wait 1 1

burst gap 5 5

regular gap 20 20

Threat model: The sender core sends a bit-stream through a

socket, which is monitored by the receiver using a flush-based

covert channel. The presence of the cache line corresponding

to the memory address of the socket is interpreted as a set bit

by the receiver, otherwise is interpreted as a reset bit.

Note that the socket does not establish any direct connection

between the programs, and is used by the sender to send the

bit-stream. The size of the bit-stream is 1000 bytes for our

experiment. Table VI shows the parameters of interest.

Results: Figure 7 illustrates the error rate of these attacks

at various noise levels. We also plot the bandwidth of different

attacks in Figure 8. The bandwidth increases as the average

core frequency (that is, compute or memory-intensive noise

level) increases. We obtain a peak bandwidth of 217 KBps

using the DABANGG+Flush+Reload attack, with an overall

error-rate of 0.01%. While bandwidth increases as noise levels

increase, a consistent low error rate is crucial for feasibility

of the covert channel, which is provided by the DABANGG

refinements. The bandwidth increases at higher noise levels

(that is, L-H-H, H-L-H, H-H-L, and H-H-H levels) because

all core of our PCPS-enabled processor run at high frequency

at these noise levels (refer to Section III-A for details). This

allows the programs to send and receive more bits per second.

VI. COUNTERMEASURES

As DABANGG-refined attacks are fundamentally flush-

based attacks, mitigation and detection techniques that are

applicable to flush-based attacks, also apply to DABANGG-

enabled attacks. From the Operating System’s view,

DABANGG-enabled attacks increase the CPU utilization of

the attacker thread, compared to standard attacks, as we rarely

yield the CPU. Many workloads have high CPU utilization, but

the OS can potentially use other indicators (like performance

counters, explained below) to pinpoint the attacker thread

with more confidence. We now discuss several mitigation and

detection techniques in detail.

A. Mitigation Techniques

Ever since cache-based side-channels were showcased for

the case of AES by Osvik et al. [5], several classes of

mitigation techniques have been proposed, like partitioning

mappings to the cache to avoid monitoring of victim cache

lines by the attacker [25] [26] [27] [28] and limiting the

granularity or privilege of instructions crucial to flush-based

cache attacks, like rdtsc and clflush [29] [30] [31].

Limiting resolution of instructions, requiring privileged access

to these instructions, and partitioning the cache does work,

but is rarely employed due to impact on performance and
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utility. Moreover, many software-based mitigations suffer from

worse performance impact than hardware-based mitigations

[26], making them unattractive for all but the most security-

critical use-cases. Security-conscious vendors with vulnerable

hardware either opt for performance impeding software-based

mitigations or lightweight detection mechanism.

B. Detection Techniques

A large number of detection techniques [32] [33] rely

on identifying anomalous cache behavior by utilizing perfor-

mance measuring hardware counters, like Intel’s PMC [16]

[34]. Detection routine at run-time in such techniques is a two-

step process. In the first step, the detector records performance

counter readings for all processes. The detector then analyzes

representative parameters like number of cache references,

cache misses, miss-rate, etc. to identify suspicious behavior.

This analysis can be done by a heuristics-based approach

[32] or by a learning-based approach [35] [36], where trained

model infers a particular program as malicious, or otherwise.

Note that most detection mechanisms also fundamentally use

thresholds are are vulnerable to extreme system noise. De-

veloping noise-resilient cache attack detectors is a promising

future direction of research.

VII. RELATED WORKS

A. Cache Attack Toolkits

Mounting accurate flush-based cache attacks requires pre-

cise calibration and considerable setup time. Existing toolkits

like Mastik [37] and Cache Template Attacks [4] provide

implementations of cache attacks, including flush-based at-

tacks. They provide generic techniques to identify memory

addresses of interest, perform calibration, and mount attacks

without the need to delve into low-level details of their

implementation. In particular, Mastik attempts to resolve the

issue of varying latency of instruction execution by utilizing a

compute-intensive loop instead of sleeping in the wait period

of the attack.

While such techniques and toolkits reduce the barrier of entry

to mount flush-based cache attacks, they do not eliminate the

concern of this paper, that of inconsistent accuracy in presence

of system noise due to variable instruction execution latency.

We note that DABANGG enhances the underlying attack loop
and can be seamlessly integrated with attack toolkits.

B. Existing Flush-Based Cache Attack Refinements

It is known that cache-based side channels and covert

channels are susceptible to system noise. Maurice et al.
[7] characterize noise mathematically and implement run-

time error-correction techniques to design a noise-resistant

Prime+Probe based cache covert channel. Error-correction is

a powerful technique, but it is not applicable in a side-channel

scenario as the victim does not follow the data-transfer pro-

tocol required to correct errors on-the-fly. Didier and Maurice

[9] take the CPU interconnect topology into account while

calibrating Flush+Flush attack, but they cannot calibrate for

latency variation on single-core machines. Bangerter et al.
[38] tackle OS scheduling issues using a coordinated Denial-

of-Service (DoS) attack by launching hundreds of threads

to single-step the victim. However, such a scheme severely

impacts the stealth of the attack due to the cache activity of

the helper threads that can be tracked back to the attacker.

Noise can be filtered out during post-processing [39], [38] but

it requires more traces (that is, more attack loop iterations)

which in-turn impacts stealth of the attack.

A few alternatives to rdtsc time-stamp counter exist.

Schwarz et al. [39] implement a lightweight timestep-counter

thread that has a 15% higher resolution than rdtsc. However,

given accurate threshold, as the resolution of rdtsc is ade-

quate for distinguishing a cache hit from a miss, the counter-

thread is effectively an overhead for non-SGX scenarios. Even

with a counter-thread based method, the latency measured is

still variable due to DVFS and OS scheduling issues. Bulck et
al. [40] utilize the APIC timer to single-step the victim. As it

requires kernel-level privileges, it is outside the scope of this

paper. The sleep mechanism in standard Flush+Flush attack

[1] has been replaced by a compute-intensive loop to maintain

the core at a high frequency [37], reducing the noise-induced

latency variance to an extent. As we showcase in Section III,

however, none of these techniques are sufficient in isolation.

VIII. CONCLUSION

In this paper, we analyze the dependence of the accuracy of

flush-based attacks on execution latency of threshold-defining

instructions. We showcase that dynamic core frequencies due

to Dynamic Voltage and Frequency Scaling (DVFS) result in

varying clflush and reload instruction latencies. We also

reveal the change in latency due to the relative positioning

of attacker and victim programs on CPU cores. To make

flush-based attacks resilient to system noise, we propose a

set of three refinements, termed DABANGG, over standard

flush-based attacks. We outline techniques to perform latency-

variation-aware and victim-aware calibration. We use the set

thresholds to enable busy waiting and periodic feedback at

attack runtime. We test DABANGG-enabled attacks in side-

channel based keylogging, AES secret key extraction, and

covert channel scenarios, and show the effectiveness across

different system noise levels.

AVAILABILITY

The Github repository with the source code is available at

https://github.com/DABANGG-Attack/Source-Code.
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the other side: SSH over robust cache covert channels in
the cloud,” in 24th Annual Network and Distributed System
Security Symposium, NDSS 2017, San Diego, California, USA,
February 26 - March 1, 2017, 2017. [Online]. Available:
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/
hello-other-side-ssh-over-robust-cache-covert-channels-cloud/

[8] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for
reduced cpu energy,” in Proceedings of the 1st USENIX Conference
on Operating Systems Design and Implementation, ser. OSDI ’94.
Berkeley, CA, USA: USENIX Association, 1994. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1267638.1267640

[9] G. Didier and C. Maurice, “Calibration Done Right: Noiseless
Flush+Flush Attacks,” in DIMVA 2021 - The 18th Conference on
Detection of Intrusions and Malware
Vulnerability Assessment, Lisboa / Virtual, Portugal, Jul. 2021. [Online].
Available: https://hal.inria.fr/hal-03267431

[10] Rafael J. Wysocki, “Cpu performance scaling - the linux kernel,” 2017,
https://www.kernel.org/doc/html/v4.15/admin-guide/pm/cpufreq.html.

[11] “Frequently asked questions about enhanced intel speedstep technol-
ogy for intel processors,” 2019, https://www.intel.in/content/www/in/en/
support/articles/000007073/processors.html.

[12] “Amd powernow! technology- informational white paper,” 2000, https:
//www.amd.com/system/files/TechDocs/24404a.pdf.

[13] Intel Corporation, Intel® 64 and IA-32 Architectures Optimization Ref-
erence Manual, April 2018, no. 248966-018.

[14] “Amd turbo core technology,” 2020, https://www.amd.com/en/
technologies/turbo-core.
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Fig. 9. Utility of (a) Compute-intensive code and (b) Victim-specific parameters on DABANGG+Flush+Flush attack.
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Fig. 10. Effect of thread migration based on CHANGE_AFFINITY_FACTOR.

APPENDIX A

SENSITIVITY STUDY

Utility of compute-intensive loop: Figure 9(a) shows

the advantage of compute-intensive loops over cooperative-

yielding loops. The DABANGG+Flush+Flush attack utilizing

sched_yield() suffers from excessively yielding the CPU

which reduces the accuracy considerably. Note that the attacks

corresponding to zero sched_yield() function calls and

regular_gap = 0 are equivalent.

Utility of victim-specific parameters: Figure 9(b) illus-

trates the importance of victim-specific parameters along with

the compute-intensive loop. There are two issues with standard

attacks: (i) a single cache hit in a victim where burst-mode

access is present does not signify a true hit; it may be

a false positive, and (ii) if we keep count of burst-mode

accesses, a nearly correct sequence may be discarded by the

attack loop due to a missed cache-hit. This reduces the accu-

racy of the attack. DABANGG refined attacks resolve these

problems by (i) identifying burst-mode sequence (seq_id
variable) and correlating it with victim-specific expected se-

quence (burst_seq parameter) and memory access inter-

val (acc_interval parameter), and (ii) allowing missed

cache-hits in the attack by keeping a waiting window of

burst_wait iterations.

Effect of thread migration: Figure 10 corresponds to

a thread migration analysis. An attack resilient to frequent

core switches is desirable, as the latency changes based

on the relative positioning of the victim and attacker pro-

grams on the processor cores. We artificially migrate the

attacker core randomly, essentially de-scheduling the pro-

cess from the current core and scheduling it on the in-

tended core. We run a single character lookup experi-

ment with all four attacks. DABANGG+Flush+Flush attack,

whose accuracy is more dependent on processor frequency,

is more affected by random core migrations compared to

DABANGG+Flush+Reload attack. The number of attack loop

iterations that are allowed to elapse before changing the core

affinity is marked by the CHANGE_AFFINITY_FACTOR,

which we vary and record the corresponding attack accu-

racy. The Linux scheduler may change the program core

within a few 10s of milliseconds, which corresponds to

CHANGE_AFFINITY_FACTOR of around 104. However, we

test for CHANGE_AFFINITY_FACTOR ranging from 100

(≈10 microseconds) to 109 (≈few hours). We also experiment

with hardware prefetchers ON/OFF at L1 and L2 levels,

and we find it has a negligible effect on the DABANGG

refinements.

The DABANGG refined attacks provide higher accuracy

at each CHANGE_AFFINITY_FACTOR. The general trend

obtained signifies that the accuracy increases with larger

CHANGE_AFFINITY_FACTOR, which translates to more

time available to stabilize the core frequency and in case of

DABANGG-refined attacks, also to provide periodic feedback

about the accuracy of thresholds.
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